Validation of a quantitative method for real time PCR kinetics.

نویسندگان

  • Weihong Liu
  • David A Saint
چکیده

Real time RT-PCR is the most sensitive method for quantitation of gene expression levels. The accuracy can be dependent on the mathematical model on which the quantitative methods are based. The generally accepted mathematical model assumes that amplification efficiencies are equal at the exponential phase of the reactions for the same amplicon. However, no methods are available to test the assumptions regarding amplification efficiency before one starts the real time PCR quantitation. Here we further develop and test the validity of a new mathematical model which dynamically fits real time PCR data with good correlation (R(2)=0.9995+/-0.002, n=50). The method is capable of measuring cycle-by-cycle PCR amplification efficiencies and demonstrates that these change dynamically. Validation of the method revealed the intrinsic relationship between the initial amount of gene transcript and kinetic parameters. A new quantitative method is proposed which represents a simple but accurate quantitative method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Validation of a genus-specific gene; TPS, used as internal control in quantitative Real Time PCR of transgenic cotton

Identification of genes with invariant levels of gene expression is a prerequisite for validating transcriptomic changes accompanying development. Ideally expression of these genes should be independent of the morphogenetic process or environmental condition.We report here the validation of internal control gene i.e.TPS (trehalose 6-phosphate-synthase) in cotton (Gossypium spp), using TaqMan sy...

متن کامل

تعیین کمی بار ویروسی هپاتیت C با استفاده از روش Real-Time PCR In-House در بیماران آلوده به هپاتیت C در شهرستان خرم آباد

Background : Molecular diagnostic methods are among major tools in management of hepatitis C virus (HCV) in infected patients. Many studies have shown that viral load is associated with stage of infection and response to treatment. Therefore, the evaluation and quantification of viral load is very important. The goal of this study is implementation of inexpensive, yet accurate method for quanti...

متن کامل

Validation of Reference Genes for Real Time PCR Normalization in Milk Somatic Cells of Holstein Dairy Cattle

Real time-qPCR is the most reliable method for evaluation of mRNA expression levels. However, to obtain accurate results, selection of suitable reference genes is necessary for normalizing the real-time qPCR data. The aim of this research was to validate the expression stability of three potential reference genes (ACTB, GAPDH and UXT) in milk somatic cells of Holstein dairy cattle under differe...

متن کامل

Development and Evaluation of Real-Time RT-PCR Test for Quantitative and Qualitative Recognition of Current H9N2 Subtype Avian Influenza Viruses in Iran

Avian influenza H9N2 subtype viruses have had a great impact on Iranian industrial poultry production economy since introduction in the country. To approach Rapid and precise identification of this viruses as control measures in poultry industry, a real time probe base assay was developed to directly detect a specific influenza virus of H9N2 subtype -instead of general detection of Influenza A ...

متن کامل

Evaluation of a new set of Real-Time PCR for Brucella detection within human and animal samples

A quantitative TaqMn Real-Time PCR assay was developed and its diagnostic value on human serum and livestock samples were evaluated. Brucella species could be distributed through communities as a biological agent. Rapid detection of biological threat agents is critical for timely therapeutic administration. Quantitative real-time PCR provides a rapid, sensitive and specific tool for molecular i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochemical and biophysical research communications

دوره 294 2  شماره 

صفحات  -

تاریخ انتشار 2002